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Abstract

Unit cell models have been widely used for investigating fracture mechanisms and mechanical properties of composite materials

assuming periodically arrangement of inclusions in matrix. It is desirable to clarify the geometrical parameters controlling the

mechanical properties of composites because they usually contain randomly distributed particulate. To begin with a tractable prob-

lem this paper focuses on the effective Young�s modulus E of heterogeneous materials. Then, the effect of shape and arrangement of

inclusions on E is considered by the application of FEM through examining three types of unit cell models assuming 2D and 3D

arrays of inclusions. It is found that the projected area fraction and volume fraction of inclusions are two major parameters con-

trolling effective elastic modulus of inclusions.
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1. Introduction

To investigate mechanical properties and ductile frac-

ture mechanisms of structural materials under tension,

finite element analyses have been widely used together

with unit cell models as shown in Fig. 1(a) and (b) on

the assumption of periodically arrangement of voids,

particles, inclusions, and fibers in matrix. In the previous

studies, for example, Needleman [1] discussed void

growth and coalescence using a doubly periodic square
array of circular cylindrical voids. Tvergaard [2,3]

carried out detailed stress analysis for plane strain and

axisymmetric unit cell models (see Fig. 2) considering

shear band instabilities in a void containing medium.
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Christman–Needleman–Suresh [4] also used these two

models to investigate the dependence of tensile pro-
perties on the matrix microstructures of whisker- and

particulate-reinforced metal–matrix composites. In

addition, several other researchers investigated these

types of composites using similar unit cell models [5–9].

However, unit cell models used in the previous stud-

ies always assume periodically arrangement of �inclu-
sions� having the same shape and dimensions. If the

arrangement or shape of inclusions change even a little,
the results may be different from the ones shown in the

papers. From this viewpoint, it appears to be important

to clarify the geometrical parameters controlling the

mechanical properties because they usually contain dis-

ordered distributed particulate. To begin with a tracta-

ble problem, in this paper, we will focus on the

effective Young�s modulus, which is one of the most

important and fundamental properties of composites.
Then, we will discuss controlling parameters through

examining three types of models in Fig. 1 with varying
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Fig. 1. Three kinds of unit cell models considered (a) 2D model (b) 3D

model (c) two-groups-inclusion model both having identical inclusions.

Fig. 2. Axisymmetric unit cell model approximate to 3D array of

inclusions.
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the shape and arrangement of inclusions on the basis of

mechanical and physical consideration.
2. Analysis of unit cell models

To predict effective properties of heterogeneous mate-

rials from a knowledge of constituents is a classical

problem in science and engineering, attracting the atten-

tion of a lot of researchers [9–14]. Recently, some inves-

tigations have been made for disordered array using

such as homogenization method [15–17]. These results

are useful for evaluating the actual composites; however,
if the shape and arrangement of inclusions are changed a

little, we have to reconsider the effective properties. In

other words, there is little discussion about the difference

between the results of simple models and random
arrangement in actual composites in terms of mechanics

or physics of solids. In this study effective Young�s mod-

ulus will be considered for three types of models in Fig.

1 by the application of FEM.

As an example, an axisymmetric unit cell model as

shown in Fig. 2 can be analyzed in the following way

[3]. The boundary conditions of Figs. 2 and 3(a) can

be expressed as

ðIÞ On r ¼ 0 and 0 6 z 6 lz : ur ¼ 0; srz ¼ 0;

ðIIÞ On r ¼ lz and 0 6 z 6 lz : ur ¼ ur0; srz ¼ 0;

ðIIIÞ On z ¼ 0 and 0 6 r 6 lr : uz ¼ 0; srz ¼ 0;

ðIVÞ On z ¼ lz and 0 6 r 6 lr : uz ¼ uz0; srz ¼ 0:

ð1Þ
Also we have

Z lr

0

rzjz¼lr
2prdr ¼ r0 � pl2r ;

Z lz

0

rrjr¼lr
2prdz ¼ 0: ð2Þ

We have to set the constants ur0, uz0 so as to satisfy Eq.

(2). However, since they are still unknown, the auxiliary

problems will be solved instead of solving the given

problem directly. First, the following auxiliary problem

(b) shown in Fig. 3(b) is solved under the boundary con-

dition as shown in Eqs. (3) and (4). Here, this C1 is an

arbitrary constant.

ðIÞ On r ¼ 0 and 0 6 z 6 lz : ur ¼ 0; srz ¼ 0;

ðIIÞ On r ¼ lz and 0 6 z 6 lz : ur ¼ 0; srz ¼ 0;

ðIIIÞ On z ¼ 0 and 0 6 r 6 lr : uz ¼ 0; srz ¼ 0;

ðIVÞ On z ¼ lz and 0 6 r 6 lr : uz ¼ c1; srz ¼ 0:

ð3Þ
Then, the resultant force F1 in the r-direction on the
boundaries r = lr with 0 5 z 5 lz, and the resultant force



Fig. 3. (a) Given problem for axisymmetric unit cell model, (b), (c) auxiliary problems.
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F2 in z-direction on the boundaries z = 0, lz with

0 5 r 5 lr are calculated as shown in Eq. (4).Z lz

0

rrjr¼lr
2prdz ¼ F 1;

Z lr

0

rzjz¼lz
2prdr ¼ F 2: ð4Þ

Next, the second auxiliary problem (c) shown in Fig.

3(c) is solved under the following boundary conditions:

ðIÞ On r ¼ 0 and 0 6 z 6 lz : ur ¼ 0; srz ¼ 0;

ðIIÞ On r ¼ lz and 0 6 z 6 lz : ur ¼ c1; srz ¼ 0;

ðIIIÞ On z ¼ 0 and 0 6 r 6 lr : uz ¼ 0; srz ¼ 0;

ðIVÞ On z ¼ lz and 0 6 r 6 lr : uz ¼ 0; srz ¼ 0:

ð5Þ
Then, the resultant force F3 in the r-direction on the

boundaries r = lr with 0 5 z 5 lz, and the resultant force

F4 in z-direction on the boundaries z = 0, lz with

0 5 r 5 lr are calculated as shown in Eq. (4).

Z lz

0

rrjr¼lr
2prdz ¼ F 3;

Z lr

0

rzjz¼lz
2prdr ¼ F 4: ð6Þ

The solution for Fig. 3(a) can be expressed by superpos-

ing the solution for Fig. 3(b) and the solution for Fig.

3(c) as shown in Eq. (7). Here the solutions of Fig.
3(a), (b), and (c) denote (ra,ua), (rb,ub), and (rc,uc),
respectively.

ra ¼ rb �
F 1

F 3

rc

� �
� ðr0 � pl2r Þ

�
F 2 � F 4

F 1

F 3

� �

ua ¼ ub �
F 1

F 3

uc

� �
� ðr0 � pl2r Þ

�
F 2 � F 4

F 1

F 3

� � ð7Þ

In this study rectangular- and cylindrical-shaped inclu-

sions will be mainly treated because these shapes have

been used as 2D and 3D models of fibers in composites.
In our previous studies, for example, the magnitude of

singular stress at the corner of these inclusions have

been discussed [18]. The present results, however, can

be applied to other shaped inclusion as shown in the

next section.
3. Effect of shape of inclusion

First, plane stress condition with Poisson�s ratio

mM = mI = 0.3 is assumed for the matrix and inclusions,

whose elastic constants are (EM,mM) and (EI,mI), respec-
tively; then, square arrays of circular and elliptical inclu-

sions are analyzed to confirm the accuracy of FEM



Fig. 4. (a) E/EM vs. VI relation for rectangular and elliptical inclusions when ly/lx = 1, EI/EM = 105, mM = mI = 0.3 under plane stress, (b) E/EM vs. VI

relation for cylindrical and ellipsoidal inclusions when lz/lr = 1, EI/EM = 105, mM = mI = 0.3.
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analysis. The present solutions for the maximum stresses

coincide with Isida–Sato�s [19] and Uchiyama–Yatsuda–

Murakami�s results [20] within 1% in most cases. In Fig.

4(a), square arrays of rectangular and elliptical inclu-

sions are compared. In Fig. 4(b), cylindrical and ellipsoi-

dal inclusions are compared. When the unit cell has the
dimensions 2lx · 2ly, the volume fractions of inclusion

VI = ab/(lxly) for rectangular inclusion; and VI = pa 0b 0/

(4lxly) for elliptical inclusion. Here, the rectangular

inclusion has dimensions a, b, and the elliptical inclusion

has radii a 0, b 0.

As shown in Fig. 4, the effective Young�s modulus is

not equal even though VI = constant. The effective

Young�s modulus is identical under the following
conditions:

(1) the projected area fractions of inclusions are equal,

that is, a/lx = a 0/lx;

(2) the volume fractions of inclusions are equal, that is,

ab/(lxly) = pa 0b 0/(4lxly).
Fig. 5. Elastic modulus is almost equal when (1) a/lx = a 0/lx and (2) ab/

(lxly) = pab/(4lxly).
Fig. 5 illustrates the equivalent condition of

inclusions.

If the condition is satisfied, it may be concluded that
the effective Young�s modulus is almost equal even

though the shape of inclusions differs from rectangle

or ellipse. Therefore, actual irregularly shaped inclusions

may be evaluated from equivalent rectangular inclusions

with the application of FEM.
4. Comparison between the results of plane strain and
axisymmetric unit cell models

In Fig. 6 the effective Young�s moduli E are compared

between the rectangular inclusions in Fig. 1(a) and cylin-

drical inclusions in Fig. 1(b). Here, VI = (a*/lx)(b*/ly) for

plain strain model in Fig. 1(a); and VI = (a/lr)
2(b/lz) for

axisymmetric model in Fig. 1(b). As shown in Fig. 6,

the effective Young�s modulus E is almost identical
under the following conditions (see Fig. 7):

(1) the projected area fractions of inclusions AI are

equal, that is, a*/lx = (a/lr)2;

(2) the volume fractions of inclusions VI are equal, that

is, (a/lr)
2(b/lz) = (a*/lx)(b*/ly).

Using this condition we can evaluate 3D array of
inclusion from the results of 2D analysis. Table 1 indi-

cates the effect of Poisson�s ratios for cylindrical and

ellipsoidal inclusions when ly/lx = lz/lr = 1, EI/EM = 105.

The plane strain�s and axisymmetric results almost coin-

cide with each other if the two models have the same val-

ues of AI, VI, Poisson�s ratios mM, mI, unit cell�s aspect

ratio (ly/lx = lz/lr), and elastic ratio EI/EM.
5. Effect of arrangement of inclusion

In the above discussion the effective Young�s modulus

E is found to be controlled by two major parameters,



Fig. 6. (a) E/EM vs. VI relation for plain strain and axisymmetric inclusion models when ly/lx = lz/lr = 1, EI/EM = 105, mM = mI = 0.3 (b) E/EM vs. VI

relation for plain strain and axisymmetric inclusion models when ly/lx = lz/lr = 2, EI/EM = 105.

Fig. 7. Elastic modulus is almost equal when (1) the projected area

fractions of inclusions are equal, that is, a*/lx = (a/lr)2 (2) the volume

fractions of inclusions are equal, that is, (a*/lx)(b*/ly) = (a/lr)
2(b/lz).

Table 1

Effect of Poisson�s ratio for cylindrical and ellipsoidal inclusions in Fig.

1(a) and (b) when ly/lx = lz/lr = 1, EI/EM = 105

Poisson�s ratio (mI = mM) 0 0.3 0.4 0.45

2D Unit cell 2.829 3.057 3.547 4.087

3D Unit cell 2.951 3.134 3.592 4.141

Fig. 8. (a) Dimensions of two-groups-inclusion model where both

groups have the elastic ratio EI/EM = 105 and Poisson�s ratio

mM = mI = 0.3 under plane stress. (b) Effective Young�s modulus E vs.

the central coordinate of group B varying in the range 0 5 x 5 lx/2,

0 5 y 5 lx/2.
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that is, (i) the projected area fractions of inclusions AI,

and (ii) the volume fractions of inclusions VI. This con-

clusion is, however, obtained from the results of two-

dimensional and axisymmetric unit cell models assuming

periodically arrangement of inclusions. Therefore to

investigate the effect of disordered array of inclusions,
the model of Fig. 1(c) is considered in this section. Here,

the position of group A is fixed; then the effect of loca-

tion of group B on the effective Young�s modulus is con-

sidered. For the unit cell with dimensions lx · ly, the

volume fraction of inclusion is VI = 8ab/(lxly) for rectan-

gular inclusion with dimensions 2a · 2b. Fig. 8(a) shows

dimensions of the model of periodically arranged inclu-

sions having elastic ratio EI/EM = 105 and Poisson�s
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ratio mM = mI = 0.3 under plane stress. Fig. 8(b) indicates

the effective Young�s modulus in the y-direction E as a

function of the central coordinate of group B varying

in the range 0 5 x 5 lx/2, 0 5 y 5 lx/2. As shown in these

Fig. 8, the variation of E/EM is 0.94 � 1.44; however, if

we compare among the values of cases (A), (B), and (D),
the variation becomes small, within about a few percent,

that is, 0.94 � 1.02. Therefore, it may be concluded that

the effective Young�s modulus is almost independent of

the location of group B if the projected areas of groups

A and B are not overlapped. In other words, the volume

fraction of inclusion and projected area fraction of

inclusions are two major parameters controlling the

effective Young�s modulus of model 1 (c). Therefore it
may be concluded that actual composites can be evalu-

ated efficiently in terms of two major parameters, that

is, the projected area fractions and volume fractions of

inclusions.
6. Conclusion

Unit cell models have been widely used to investigate

mechanical properties and also ductile fracture mecha-

nisms together with finite element analyses assuming

periodically arrangement of voids, particles, inclusions,
and fibers in matrix. Actual structural materials, how-

ever, usually have randomly distributed general �inclu-
sions�. To begin with a tractable problem, in this

paper, the effect of shape and arrangement of inclusions

on the effective Young�s modulus E of heterogeneous

materials is considered through examining three types

of unit cell models as shown in Fig. 1. The conclusions

can be made in the following way:
(1) The effect of shape of inclusions is considered

from the results of rectangular and elliptical inclusions,

together with the results of ellipsoidal and cylindrical

inclusions. Then, the effective Young�s modulus is found

to be mainly determined by two major parameters, that

is, (i) the area fraction of inclusions projected in tensile

direction AI, and (ii) the volume fraction of inclusion

VI, almost independent of shape of inclusion.
(2) The results of plane strain model in Fig. 1(a) and

axisymmetric model of Fig. 1(b) are compared. Then, it

is also found that the effective Young�s modulus E is al-

most identical if (i) the projected area fractions of inclu-

sions AI and (ii) the volume fractions of inclusions VI are

equal.

(3) The effect of disordered array of inclusions is dis-

cussed using the model of Fig. 1(c). Here, the effect of
location of group B is examined when the position of

group A is fixed. Then, it may be concluded that the

effective Young�s modulus E is almost independent of

the location of group B if the projected areas of groups

A and B are not overlapped.
(4) The volume fraction of inclusion VI and projected

area fraction of inclusions AI are found to be two major

parameters controlling the effective Young�s modulus of

composites. Disordered irregularly-shaped inclusions

may be evaluated from equivalent ordered rectangular

inclusions with the application of FEM. This replace-
ment may be effective and efficient if actual inclusions

are well-approximated by elliptical, ellipsoidal, or cylin-

drical inclusions.
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